Consider the example time series data (https://docs.timescale.com/getting-started/latest/add-data/#ingest-the-dataset) where the price of stock and the volume traded in a day till the time is being added in to the database. in the continuous aggregate the Open, high, Low and close of each day has been and highest of day can be calculated as the traded volume. Now if i am to create candles per hour. Then I have to calculate the volume traded in each hour which will be equal to max(day_volume) in the current bucket minus the max(day_volume) in the previous row. How can i make an continuous aggregate in such a case?
| timestamp | symbol | price | volume |
|----------------------------|--------|----------|--------|
| 2022-06-11 12:42:04.912+00 | SBIN | 120.0000 | 5 |
| 2022-06-11 12:42:25.806+00 | SBIN | 123.0000 | 6 |
| 2022-06-11 12:42:38.993+00 | SBIN | 123.4500 | 8 |
| 2022-06-11 12:42:42.735+00 | SBIN | 108.0000 | 12 |
| 2022-06-11 12:42:45.801+00 | SBIN | 121.0000 | 14 |
| 2022-06-11 12:43:43.186+00 | SBIN | 122.0000 | 16 |
| 2022-06-11 12:43:45.599+00 | SBIN | 125.0000 | 17 |
| 2022-06-11 12:43:51.655+00 | SBIN | 141.0000 | 20 |
| 2022-06-11 12:43:54.151+00 | SBIN | 111.0000 | 24 |
| 2022-06-11 12:44:01.908+00 | SBIN | 123.0000 | 27 |
should give a view like
| time | symbol | high | open | close | low | volume |
|------------------------|--------|----------|----------|----------|----------|--------|
| 2022-06-11 12:44:00+00 | SBIN | 123.0000 | 123.0000 | 123.0000 | 123.0000 | 14 |
| 2022-06-11 12:43:00+00 | SBIN | 141.0000 | 122.0000 | 111.0000 | 111.0000 | 10 |
| 2022-06-11 12:42:00+00 | SBIN | 123.4500 | 120.0000 | 121.0000 | 108.0000 | 3 |